Table of content

Table of Contents
List of Tables
List of Figures
List of Plates
List of Abbreviations
EIA Preparers
Executive Summary
Acknowledgment

CHAPTER ONE
BACKGROUND INFORMATION

1.0 Introduction
1.1 The Proponent
1.2 Nigeria
1.3 Need for the environmental impact assessment
1.4 Terms of Reference [TOR] of this EIA
1.5 EIA objectives
1.6 Scope of work of the EIA
1.7 EIA methodology
1.8 Regulatory framework
1.8.1 Legal basis for Environmental Permitting
1.8.2 Applicable Legislative/Administrative Framework of the Project
1.9 Structure of the report
1.10 Declaration

CHAPTER TWO
PROJECT JUSTIFICATION

2.1 Site justification
2.2 Need
2.3 Value
2.4 Sustainability
2.4.1 Technical Sustainability
2.4.2 Environmental Sustainability
2.4.3 Social Sustainability
2.4.4 Economic Sustainability
2.5 PROJECT ALTERNATIVES / OPTIONS
2.5.1 Option 1: Natural Gas as Raw Material
2.5.2 Option 2: Use of Indorama Complex as Project Location
2.5.3 No Project Alternative

CHAPTER THREE
PROJECT DESCRIPTION

3.1 Introduction
3.2 Proposed location of ammonia, urea plants
3.3 Project description
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Ammonia Plant:</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Urea Plant</td>
<td>3-10</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Utilities Description</td>
<td>3-14</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Power generation</td>
<td>3-14</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Raw Water Treatment</td>
<td>3-14</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Demineralized Water & Condensate Polishing System</td>
<td>3-14</td>
</tr>
<tr>
<td>3.3.3.4</td>
<td>Steam Generation and Boiler Feed Water System</td>
<td>3-15</td>
</tr>
<tr>
<td>3.3.3.5</td>
<td>Cooling Tower</td>
<td>3-16</td>
</tr>
<tr>
<td>3.3.3.6</td>
<td>Effluents treatment system</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.3.6.1</td>
<td>Inside plant battery limit effluent treatment</td>
<td>3-19</td>
</tr>
<tr>
<td>3.3.3.6.2</td>
<td>Final treated effluent</td>
<td>3-20</td>
</tr>
<tr>
<td>3.3.3.7</td>
<td>Nitrogen System</td>
<td>3-21</td>
</tr>
<tr>
<td>3.3.3.8</td>
<td>Natural Gas System</td>
<td>3-21</td>
</tr>
<tr>
<td>3.3.3.9</td>
<td>Ammonia Storage Tank</td>
<td>3-21</td>
</tr>
<tr>
<td>3.3.3.10</td>
<td>Urea Storage</td>
<td>3-22</td>
</tr>
<tr>
<td>3.3.3.11</td>
<td>Fertilizer plant system control</td>
<td>3-22</td>
</tr>
<tr>
<td>3.3.3.12</td>
<td>Non-Plant Facilities</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Utilities for Construction</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Types and sources of air emissions</td>
<td>3-25</td>
</tr>
<tr>
<td>3.3.5.1</td>
<td>Sources of Gaseous Emissions for the Ammonia Plant</td>
<td>3-25</td>
</tr>
<tr>
<td>3.3.5.2</td>
<td>Sources of Gaseous Emissions for the Urea Plant</td>
<td>3-27</td>
</tr>
<tr>
<td>3.3.5.2.1</td>
<td>Emission control in Urea Plant</td>
<td>3-27</td>
</tr>
<tr>
<td>3.3.5.3</td>
<td>Air emissions and applicable standards</td>
<td>3-28</td>
</tr>
<tr>
<td>3.3.5.4</td>
<td>Fugitive emissions</td>
<td>3-31</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Waste Generated and Estimated Quantities</td>
<td>3-32</td>
</tr>
<tr>
<td>3.3.6.1</td>
<td>Hazardous Substance</td>
<td>3-34</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Energy Conservation</td>
<td>3-35</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Storm Water Management</td>
<td>3-39</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Gaseous waste</td>
<td>3-40</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Transport of Men, Materials and Equipment in the New Plant</td>
<td>3-40</td>
</tr>
<tr>
<td>3.4</td>
<td>Decommissioning activities</td>
<td>3-41</td>
</tr>
<tr>
<td>3.5</td>
<td>Project schedule</td>
<td>3-41</td>
</tr>
</tbody>
</table>

CHAPTER FOUR

DESCRIPTION OF THE ENVIRONMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>General</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Baseline Data Acquisition Methods</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Description of Sampling Locations</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Spatial Boundary for the Study</td>
<td>4-2</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Environmental components of the Study</td>
<td>4-2</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Study Design and Methodology</td>
<td>4-3</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Quality Assurance / Quality Control</td>
<td>4-6</td>
</tr>
<tr>
<td>4.2</td>
<td>Meteorology</td>
<td>4-7</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Site Specific Micro Meteorology</td>
<td>4-7</td>
</tr>
<tr>
<td>4.3</td>
<td>AIR QUALITY AND NOISE</td>
<td>4-18</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Air Quality</td>
<td>4-18</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Noise Survey</td>
<td>4-29</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Day and Night measurement</td>
<td>4-31</td>
</tr>
</tbody>
</table>
4.3.3 Stack Emission 4-31
4.3.4 Emission Modeling 4-32
4.3.3.1 Results of First Level Assessment 4-34
4.3.3.2 Results of Second Level Assessment 4-36
4.4 SOIL QUALITY 4-48
4.4.1 Sampling Methodology 4-48
4.4.2 Morphological properties 4-48
4.4.3 Soil Physico-chemical Characteristics 4-49
4.4.4 Soil microbiology 4-55
4.4.5 Soil Fauna 4-56
4.4.6 Heavy metals 4-56
4.4.7 Land use 4-58
4.5 VEGETATION AND WILDLIFE 4-59
4.5.1 Vegetation 4-59
4.5.1.1 Tree/Shrub species composition 4-59
4.5.1.2 Tree/Shrub family composition 4-60
4.5.1.3 Herbaceous species composition 4-61
4.5.1.4 Herbaceous family composition 4-63
4.5.2 Wild Life species composition in the study area 4-64
4.5.2.1 Plant Diseases Symptoms and Isolated Pathogens 4-66
4.6 HYDROGEOLOGY 4-68
4.6.1 Geomorphology 4-68
4.6.2 Geology 4-69
4.6.2.1 Geology (General Geology of Niger Delta) 4-69
4.6.3 Hydrology 4-71
4.6.4 Groundwater quality of Boreholes 4-73
4.6.5 Water Budget 4-75
4.6.6 Geophysical investigation 4-76
4.6.6.1 Instrumentation 4-77
4.6.6.2 Data Processing 4-77
4.6.6.3 Results 4-77
4.7. SURFACE WATER SYSTEM 4-80
4.7.1 Physico-chemical properties of Surface water (Okulu Stream) 4-80
4.7.2 Surface water microbiology 4-86
4.7.3 Sediment 4-86
4.7.3.1 Sediment Physico-chemistry 4-88
4.7.3.2 Sediment Microbiology 4-88
4.7.4 Treated Effluent Water Quality 4-88
4.8 HYDROBIOLOGY 4-91
4.8.1 Phytoplankton 4-91
4.8.2 Zooplankton 4-95
4.8.3 Benthic fauna 4-99
4.8.4 Fisheries 4-103
4.8.4.1 Fishery Composition of the Study Area 4-103
4.9 WASTE MANAGEMENT 4-104
4.10 Socio – economic assessment 4-106
4.10.1 Study Settlements 4-106
4.10.2 The Eleme Communities 4-106
4.10.3 Elelenwo Community 4-107
4.10.4 Socio-economic Survey 4-107
4.10.5 Discussion of findings 4-120
4.11 HEALTH IMPACT ASSESSMENT 4-127
4.11.1 Health services 4-127
4.11.2 Nutritional Status 4-129
4.11.3 Reproductive Health 4-132
4.11.4 Disease Prevalence 4-132
4.11.5 Environmental Health Conditions 4-137
4.11.6 Indorama Medical center 4-143
4.11.7 Discussion of Findings 4-144
4.11.8 Morbidity and Mortality Rates 4-150
4.11.9 Social issues affecting Health 4-152
4.11.10 Health Needs of the Community 4-155
4.12 Stakeholder engagement / consultation 4-156
4.13 Corporate health and social responsiveness 4-159

CHAPTER FIVE
ASSOCIATED AND POTENTIAL IMPACT EVALUATION

5.1 Impact assessment methodology 5-1
5.2 List of potential and associated impacts 5-3
5.3 Expected quality of the environmental and social components after the implementation of the project 5-14
5.3.1 Air Quality 5-14
5.3.2 Noise and Vibrations 5-14
5.3.3 Surface water and Hydrobiology/Sediment 5-15
5.3.4 Ground water 5-15
5.3.5 Soil 5-16
5.3.6 Land Use 5-17
5.3.7 Job creation and housing for construction workers 5-17
5.3.8 Vegetation and Wildlife 5-19
5.3.9 Health 5-19
5.3.10 Socio-Economic conditions 5-20
5.3.11 Landscape 5-21
5.3.12 Climate 5-21
5.3.13 Improper Waste Generation 5-22
5.3.14 Contamination of surface soil with used lubricant 5-22
5.3.15 Stress on Road infrastructure 5-22
5.4 CUMULATIVE IMPACT ASSESSMENT 5-23
5.4.1 Surface water 5-23
5.4.2 Host communities 5-24
5.4.3 Air Quality 5-24
5.4.4 Ground water 5-24
5.4.5 Cumulative Positive Impacts 5-25
5.4.6 Cumulative Negative Impacts 5-25
CHAPTER SIX
MITIGATION, AMELIORATION AND COMPENSATION MEASURES

6.1 INTRODUCTION

CHAPTER SEVEN
ENVIRONMENTAL AND SOCIAL MANAGEMENT PLAN

7.0 Management Plan
7.1 Environmental Management Plan
7.1.1 Environmental Capacity Building Program
7.1.2 Monitoring Program
7.1.2.1 Performance Indicators
7.1.2.2 Environmental Monitoring Reporting System
7.1.3 Audit Program
7.1.4 Traffic Management Plan
7.1.5 Energy Conservation Program
7.1.6 Leak Detection and Repair program
7.1.7 Risk Management Plan for Contaminated Land
7.1.8 Hazardous Materials Management plan
7.1.9 Decommissioning and Closure Plan
7.1.10 Waste Management Program
7.2 Occupational Health And Safety Management Plan
7.2.1 Hazardous Materials Risk Management Plan
7.3 Social Management Plan (SMP)
7.4 Security Management Plan
7.5 Human Resources

CHAPTER EIGHT
CONCLUSION

Reference

List of Tables
Table 2.1 Monthly National Gas Production in BCF and mmscfd
Table 2.2: Fertilizer production, import, and consumption in Nigeria 2002 2017
Table 3.1: New permanent and temporary Project components
Table 3.2: Consumption of raw materials and product output for a typical Ammonia Plant
Table 3.3: Consumption of raw materials & product output for a typical Urea unit process
Table 3.4: Emission characteristics of the fertilizer plant (Primary reformer)
Table 3.5: Emission limits for the fertilizer plant (Auxiliary Boilers) adopted
(based on IFC and FMENV Guidelines)
Table 3.6: Emission characteristics (Granulation Unit) adopted from IFC Guideline
Table 3.7: Quantity of CO2 exhausted from the process plant
Table 3.8: The sources and the types of fugitive emissions from the proposed plants
Table 3.9: Waste types and estimated quantities during construction activity
Table 3.10: Hazardous materials to be used on site during construction/operations 3-34
Table 3.11: Measures to provide Energy Conservation taken by IEFCL for Fertilizer plants 3-35
Table 3.12: Measures to reduce the need of storm water treatment 3-39
Table 4.1.1: Study Communities 4-2
Table 4.1.2: Environmental Components and Methods / Instruments used for sampling / measurement / analysis 4-3
Table 4.2.1: A 24-hour Weather pattern recorded within study area. 4-8
Table 4.2.2: Average Weather Trend for Port Harcourt (1985-2015). 4-14
Table 4.3.1: Wet Season Baseline Air Quality of Project Area 4-19
Table 4.3.2: Dry season Baseline Air Quality of Project Area 4-20
Table 4.3.3: Wet and Dry season Baseline Noise Level in Project Area 4-29
Table 4.3.4: Summary of stack emission results from existing stack in the facility 4-32
Table 4.3.5: Summary of Granulator stack monitoring results 4-34
Table 4.3.6: Summary of Stack emission rate 4-34
Table 4.3.7: Summary input data 4-35
Table 4.3.8: Level-1 assessment results 4-37
Table 4.3.9: Level-2 assessment results 4-52
Table 4.4.1: Summary of Physiochemical properties of soil within the project area 4-53
Table 4.4.2: Summary of Physiochemical properties of soil within the project area (0-15cm) 4-55
Table 4.4.3: Summary of Soil microbes within the project area 4-55
Table 4.4.4: Summary of heavy metal composition in soil within the project area 4-57
Table 4.5.1: Tree/Shrub Species Composition 4-60
Table 4.5.2: Tree/Shrub family composition 4-61
Table 4.5.3: Herbaceous species composition 4-62
Table 4.5.4: Herbaceous Family 4-64
Table 4.5.5: Wild Life Species in the study area 4-65
Table 4.5.6: Plant diseases symptoms and isolated pathogens 4-67
Table 4.6.1: Geologic Unit of the Niger Delta (Allen, 1965) 4-69
Table 4.6.2: Physiochemical properties of ground water within Indorama complex and control stations 4-74
Table 4.6.3: Summary of geo-electric model in VES 1-3: 4-79
Table 4.7.1: Physico-chemical properties of Surface water (Okulu Stream) in Wet 4-81
Table 4.7.2: Physico-chemical properties of Surface water (Okulu Stream) in Dry season 4-82
Table 4.7.3: Physico-chemical properties of Sediment 4-87
Table 4.7.4: Physico-chemical properties of Treated effluent water quality (Wet Season) 4-89
Table 4.7.5: Physico-chemical properties of Treated effluent water quality (Dry Season) 4-90
Table 4.8.1: Phytoplankton species composition & distribution in the study 4-93
Table 4.8.2: Phytoplankton species composition and distribution in the study area (Dry season) 4-94
Table 4.8.3: Zooplankton species composition and distribution in the study area (Wet season) 4-97
Table 4.8.4: Zooplankton species composition and distribution in the study area (Dry season) 4-98
Table 4.8.5: Benthic invertebrates’ composition and distribution in the study area (Dry season) 4-101
Table 4.8.6: Benthic invertebrates’ composition and distribution in the study area (Wet season) 4-102
Table 4.9.1: Expected Waste Types/management strategy during the Construction Phase 4-104
Table 4.9.2: Expected Solid waste/management strategy during Operation Phase 4-105
Table 4.10.1: Demography 4-108
Table 4.10.2: Percentage Distribution of Household Water Sources 4-112
Table 4.10.3: Population Distribution in the Host Communities 4-123
Table 4.10.4: Educational Level in the Host communities of Indorama IEFCL 4-123
Table 4.11.1: Health facilities available in the different communities. 4-128
Table 4.11.2: Treatment Facility Utilization in Eleme (Agbonchia) 4-129
Table 4.11.3: Most Important Health Information Source 4-142
Table 4.11.4: Distribution of Respondents by Sex According to the Type of Medical Facility they visit for Treatment 4-147
Table 4.11.5: Most Common Illnesses/Disorders Treated by Traditional Health Care Providers for Children, Adults and Pregnant Women 4-148
Table 4.11.6: Immunization status of under-five children in the Community 4-149
Table 4.11.7: Reported Causes of Death in the Project Area 4-152
Table 4.11.8: Family History of Tobacco Smoking 4-153
Table 4.11.9: History of alcohol Consumption 4-154
Table 5.1: List of Associated and Potential Impacts of Proposed Fertilizer Project in IEFCL facility 5-5
Table 6.1 Impact mitigation measure 6-4
Table 7.1 Monitoring Plan for the IEFCL-Train2 7-10

List of figure

Figure 2.0 Average daily National Gas production in mmscfd 2-3
Figure 2.1 Fertilizer production in nigeria from 2002 to 2016 2-6
Figure 2.2 Fertilizer consumption in kg-ha of arable land 2002 to 2016 2.6
Figure 2.3 Fertilizer importation in nigeria from 2002 to 2016 2.7
Figure 2.4 Fertilizer import quantity nutrients (MT of nutrients) in Nigeria from 2002 to 2007 2.7
Figure 3.1: Block diagram of Ammonia Plant 3.5
Figure 3.2: Material flow Block diagram of proposed Ammonia Plant 3-10
Figure 3.3: Block Diagram of Urea Plant 3-11
Figure 3.4: Material flow Block diagram of proposed Urea plant 3.13
Figure 3.5: Flow diagram of ISBL Effluent Treatment Facility

Figure 3.6: Emission control system for fertilizer plant

Figure 4.2.1: Average 0000Hr Air Temp. Pattern for Study Area in July 2017.
Figure 4.2.2: Average 0600Hr Air Temp. Pattern for Study Area in July 2017.
Figure 4.2.3: Average 1200Hr Air Temp. Pattern for Study Area in July 2017.
Figure 4.2.4: Average 1800Hr Air Temp. Pattern for Study Area in July 2017.
Figure 4.2.5: Diurnal temperature and relative humidity variations during fieldwork.

Figure 4.2.6: Diurnal Wind rose pattern of project area during fieldwork.
Figure 4.2.7: Study Area Wind Direction Coming from SW/SE.
Figure 4.2.8: Diurnal wind speed record for project area during fieldwork.

Figure 4.3.1: Sulphur Dioxide concentration in project area
Figure 4.3.2: Nitrogen Dioxide concentration in project area
Figure 4.3.3: Carbon Monoxide concentration in project area
Figure 4.3.4: Ammonia concentration in project area
Figure 4.3.5: THC concentration in project area
Figure 4.3.6: TSPM concentration in project area
Figure 4.3.7: PM\textsubscript{10} concentration in project area
Figure 4.3.8: PM\textsubscript{2.5} concentration in project area
Figure 4.3.9: Wet and dry season Noise level in project area
Figure 4.3.10: Noise Lavg and Leq in project area
Figure 4.3.11: Isopleths for 24-hour Maximum Concentration of SO\textsubscript{x}
Figure 4.3.12: Isopleths for 24-hour Maximum Concentration of NO\textsubscript{x}
Figure 4.3.13: Isopleths for 24-hour Maximum Concentrations of NH\textsubscript{3}
Figure 4.3.14: Isopleths for 24-hour Maximum Concentration of Particulate Matter (PM)
Figure 4.3.15: Dry Season Polar plot of Pollutants Concentrations near the Ammonia/urea
Figure 4.3.16: Wet Season Polar plot of Pollutants Concentrations near the Ammonia/urea
Figure 4.3.17: Dry season Pollution Roses
Figure 4.3.18: Wet season Pollution Roses
Figure 4.5.1: Tree/Shrub Species Composition in the Study Area
Figure 4.5.2: Tree/shrub Species Family Composition in the Study Area
Figure 4.5.3: Herbaceous Species Composition in the Study Area
Figure 4.5.4: Herbaceous Family Species Composition in the Study Area
Figure 4.5.5: Wildlife Species Composition in the Study Area
Figure 4.6.1: Geologic characteristics of the study area
Figure 4.6.2: Ground water flow direction at Urea, Train 2 proposed site in Indorama Complex, Rivers State
Figure 4.6.3: Rainfall and concurrent evaporation at Indorama Complex Port Harcourt area
Figure 4.8.1: Percentage composition of phytoplankton groups in the wet and dry season
Figure 4.8.2: Population density of phytoplankton in the wet and dry Season
Figure 4.8.3: Percentage composition of zooplankton groups in the wet and dry season
Figure 4.8.4: Population density of zooplankton in the wet and dry season 4-99
Figure 4.8.5: Percentage composition of benthic invertebrates in the wet and dry season 4-100
Figure 4.8.6: Population density of benthic invertebrates in the wet and dry season 4-101
Figure 4.10.1: Employment Distribution in the Study Settlements 4-109
Figure 4.10.2: Ownership of Household assets in the Study Area 4-116
Figure 4.10.3: Sources of Conflict in the Study Area 4-120
Figure 4.11.1 Reason for Choice of Health Facility in the Project Area 4-145
Figure 4.11.2: Perceived Health Condition in Surveyed Communities (2017) 4-148
Figure 4.11.3: Immunization status of the area 4-150
Figure 5.1: Approach to Impact Assessment for a Sustainable Project 5-2

List of plates
Plate 1.1: Map of Nigeria Showing Rivers State 1-3
Plate 1.2: Administrative Map of Rivers State Showing the Host LGA (Eleme) of the Project Site 1-4
Plate 4.3.1: Ambient Air Quality Monitoring in progress 4-18
Plate 4.4.1: Soil sampling in progress 4-48
Plate 4.7.1: Turbid water around sand mining area 4-84
Plate 4.7.2: Cattle within the Okulu river bank feed lot 4-84
Plate 4.7.3: Collapsed bank of Okulu stream due to sand mining 4-84
Plate 4.7.4: Sampling on the Okulu river 4-84
Plate 4.9.1: Waste segregation within Indorama Complex 4-104
Plate 4.10.1: Cassava Processing in Eleme 4-110
Plate 4.10.2: Nchia Main Market in Eleme 4-111
Plate 4.10.3: Refuse Dump adjoining to water body in Aleto 4-113
Plate 4.10.4: Motorcycles are Important Means of Transportation in Eleme 4-114
Plate 4.10.5: Comprehensive Secondary School in Alesa – Eleme LGA 4-115
Plate 4.11.1: Health Center at Nchia - Eleme 4-128
Plate 4.11.2: Abattoir opposite the Aleto (Okulu) River Bridge 4-131
Plate 4.11.3: Residential Houses at Aleto 4-131
Plate 4.11.4: Garbage observed near Nichia Super market 4-138
Plate 4.11.5: Water taps at Agbonchia 4-140
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/l</td>
<td>Microgram per litre</td>
<td></td>
</tr>
<tr>
<td>µg/m³</td>
<td>Microgram per Cubic Mater</td>
<td></td>
</tr>
<tr>
<td>µM</td>
<td>Micro Meter</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>Wt%</td>
<td>Weight by Percent</td>
<td></td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquire Immune Deficiency Syndrome</td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>American Society for Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
<td></td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials International</td>
<td></td>
</tr>
<tr>
<td>BASF</td>
<td>Baden Aniline and Soda Factory</td>
<td></td>
</tr>
<tr>
<td>BFW</td>
<td>Boiler Feed Water</td>
<td></td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Technology</td>
<td></td>
</tr>
<tr>
<td>BCF</td>
<td>Billion Cubic Feet</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
<td></td>
</tr>
<tr>
<td>CHEW</td>
<td>Community Health Workers</td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>Carbon-Monoxide</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
<td></td>
</tr>
<tr>
<td>COHB</td>
<td>Carboxyl – Haemoglobin</td>
<td></td>
</tr>
<tr>
<td>CPI</td>
<td>Corrugate Plate Interceptor</td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>Cone Penetration Testing</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>CxHy</td>
<td>Hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>DAF</td>
<td>Dissolved Air flocculation</td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
<td></td>
</tr>
<tr>
<td>DMDS</td>
<td>Di-Methyl D-Sulphide</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>DPR</td>
<td>Department of Petroleum Resources</td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>Doctor</td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>Environment Assessment</td>
<td></td>
</tr>
<tr>
<td>EAR</td>
<td>Environmental Audit report</td>
<td></td>
</tr>
<tr>
<td>EDG</td>
<td>Emergency Diesel Engine</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Electrical Conductivity</td>
<td></td>
</tr>
<tr>
<td>EER</td>
<td>Environmental Evaluation Report</td>
<td></td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>Environmental Management Plan</td>
<td></td>
</tr>
<tr>
<td>EPCL</td>
<td>Eleme Petrochemicals Company Limited</td>
<td></td>
</tr>
<tr>
<td>ERP</td>
<td>Emergency Respond Plan</td>
<td></td>
</tr>
<tr>
<td>ETP</td>
<td>Effluent Treatment Plant</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
<td></td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organization</td>
<td></td>
</tr>
<tr>
<td>FGN</td>
<td>Federal Government of Nigeria</td>
<td></td>
</tr>
<tr>
<td>FMENV</td>
<td>Federal Ministry of Environment</td>
<td></td>
</tr>
<tr>
<td>FOT</td>
<td>Federal Ocean Terminal</td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>Giga Byte</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
<td></td>
</tr>
<tr>
<td>GFD</td>
<td>Group Focus Discussion</td>
<td></td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
<td></td>
</tr>
<tr>
<td>GT</td>
<td>Gas Turbine</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Hydrogen</td>
<td></td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen Sulphide</td>
<td></td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric Acid</td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
<td></td>
</tr>
<tr>
<td>HIA</td>
<td>Health Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
<td></td>
</tr>
<tr>
<td>HNO₃</td>
<td>Nitric Acid</td>
<td></td>
</tr>
<tr>
<td>HQ</td>
<td>Head Quarters</td>
<td></td>
</tr>
<tr>
<td>HSE</td>
<td>Health Safety and Environment</td>
<td></td>
</tr>
</tbody>
</table>
HTS High Temperature Shift
HUB Hydrocarbon Utilizing Bacteria
HUF Hydrocarbon Utilizing Fungi
IEFCL Indorama Eleme Fertilizer Company Limited
IITA International Institute of Tropical Agriculture
ISO International Organization for Standard
Kg Kilogram
Kg/cm² Kilogram per centimetre squared
Kg/hr Kilogram per hour
KN/M² Kilo Newton Per Meter Square
Kpa Kilo Per Annum
KODrum Knock out Drum
kWh/t Kilowatt hour per ton
LGA Local Government Area
LLDPE Linear Low Density Polyethylene
L Litre
LTS Low temperature Shift
N Nitrogen

NH₃ Ammonia
MC Master of Ceremony
MDEA Methyl Di Ethyl Amine
MDG Millennium Development Goal
mg/l Milligram per litre
MLSS Mixed Liquor Suspended Solid
MPN Most Probable Number
mmg/m³ Milligram per cubic meter
mg/m³ Milligram per meter cube
MSDS Material Safety Data Sheet
MTPD Metric Tons Per day
MW Mega Watt
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAFCON</td>
<td>National Fertilizer Company of Nigeria</td>
</tr>
<tr>
<td>NCC</td>
<td>Nature Conservancy Council</td>
</tr>
<tr>
<td>NE</td>
<td>North-east</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Electric Power Authority</td>
</tr>
<tr>
<td>NESREA</td>
<td>National Environmental Standards Regulatory Agency</td>
</tr>
<tr>
<td>NG</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>NGL</td>
<td>Natural Gas Liquid</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NDDC</td>
<td>Niger Delta development Commission</td>
</tr>
<tr>
<td>NNPC</td>
<td>Nigerian National Petroleum Company</td>
</tr>
<tr>
<td>NOx</td>
<td>Nitrogen Oxide</td>
</tr>
<tr>
<td>NPC</td>
<td>Nigeria Population Commission</td>
</tr>
<tr>
<td>NW</td>
<td>North-west</td>
</tr>
<tr>
<td>OUE</td>
<td>Odour threshold Unit set by the European Union</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>PAC</td>
<td>Project Actualization Committee</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>pH</td>
<td>Potency of Hydrogen</td>
</tr>
<tr>
<td>PHCN</td>
<td>Power Holding Company of Nigeria</td>
</tr>
<tr>
<td>PID</td>
<td>Pelvic Inflammatory Disease</td>
</tr>
<tr>
<td>PIU</td>
<td>Project Implementation Unit</td>
</tr>
<tr>
<td>PP</td>
<td>Polymerization of Propylene</td>
</tr>
<tr>
<td>PPM</td>
<td>Part Per million</td>
</tr>
<tr>
<td>PPMV</td>
<td>Part per million by volume</td>
</tr>
<tr>
<td>PPP</td>
<td>Public Private Partnership</td>
</tr>
<tr>
<td>PSU/NCAR</td>
<td>Pennsylvania State University/National Center for Atmospheric Research</td>
</tr>
<tr>
<td>PTDC</td>
<td>Plastic Technology Development Centre</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RSME</td>
<td>Rivers State Ministry of Environment</td>
</tr>
<tr>
<td>RSPM</td>
<td>Respiratory Suspended Particulate Matter</td>
</tr>
<tr>
<td>SE</td>
<td>South-east</td>
</tr>
<tr>
<td>SOx</td>
<td>Sulphur Oxide</td>
</tr>
<tr>
<td>SPDC</td>
<td>Shell Petroleum Development Company</td>
</tr>
<tr>
<td>SPM</td>
<td>Suspended Particulate Matter</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>SPT</td>
<td>Standard Penetration Test</td>
</tr>
<tr>
<td>STI</td>
<td>Sexual Transmitted Infection</td>
</tr>
<tr>
<td>SW</td>
<td>South-west</td>
</tr>
<tr>
<td>SWC</td>
<td>Storm Water channel</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolve Oxygen</td>
</tr>
<tr>
<td>TF</td>
<td>Total Fungi</td>
</tr>
<tr>
<td>THC</td>
<td>Total Hydrocarbon Content</td>
</tr>
<tr>
<td>TCLP</td>
<td>Toxicity Character Leaching Procedure</td>
</tr>
<tr>
<td>TOE</td>
<td>Tons of Oil Equivalent</td>
</tr>
<tr>
<td>TOR</td>
<td>Terms of Reference</td>
</tr>
<tr>
<td>TSPM</td>
<td>Total Suspended Particulate Matter</td>
</tr>
<tr>
<td>UES</td>
<td>Uniform Effluent Standard</td>
</tr>
<tr>
<td>USD</td>
<td>United State Dollar</td>
</tr>
<tr>
<td>Vol</td>
<td>Volume</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WTP</td>
<td>Water Treatment Plant</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
</tbody>
</table>
EIA PREPARERS

The multi-disciplinary teams and their responsibilities are as follows

<table>
<thead>
<tr>
<th>NAME</th>
<th>RESPONSIBILITIES</th>
<th>OBTAINED DEGREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLU WAI-OGOSU</td>
<td>PROJECT LEADER</td>
<td>M. SC ENVIRONMENTAL MANAGEMENT SYSTEMS</td>
</tr>
<tr>
<td>MR ADEYEMI ADEWALE</td>
<td>WATER CHEMISTRY</td>
<td>MPHIL ENVIRONMENTAL MANAGEMENT</td>
</tr>
<tr>
<td>DR SHOLA A</td>
<td>HYDROBIOLOGY & FISHERIES</td>
<td>PHD ACQUATIC BIOLOGY</td>
</tr>
<tr>
<td>DR CHRIS ANYANWU</td>
<td>HEALTH IMPACT ASSESSMENT</td>
<td>PHD PUBLIC HEALTH</td>
</tr>
<tr>
<td>DR ALLWELL NTEEGAH</td>
<td>SOCIAL IMPACT ASSESSMENT</td>
<td>PHD ECONOMICS</td>
</tr>
<tr>
<td>SIBE TAMBARI</td>
<td>MAPPING</td>
<td>PhD GEOMATICS</td>
</tr>
<tr>
<td>ENGR B YORKOR</td>
<td>EMISSION MODELLING</td>
<td>M. ENG ENVIRONMENTAL ENGINEERING</td>
</tr>
<tr>
<td>DR RALPH OFFIONG</td>
<td>WILDLIFE/ VEGETATION</td>
<td>PHD BIO-GEOGRAPHY</td>
</tr>
<tr>
<td>MR DAVID EDOKPA</td>
<td>METEOROLOGY</td>
<td>PhD CLIMATOLOGY</td>
</tr>
<tr>
<td>MR IFEANYI ANASONYE</td>
<td>HYDROGEOLOGY/ GEOTECHNICS</td>
<td>B. SC GEOLOGY</td>
</tr>
<tr>
<td>MR. INIABE EEZOR</td>
<td>WASTE MANAGEMENT</td>
<td>MPHIL ENVIRONMENTAL MANAGEMENT</td>
</tr>
<tr>
<td>SOLOMON. NWACHUKWU</td>
<td>SOIL CHEMISTRY</td>
<td>PGD SOIL SCIENCE</td>
</tr>
<tr>
<td>LEGBORSI N</td>
<td>AIR QUALITY</td>
<td>B. SC ENVIRONMENTAL MANAGEMENT</td>
</tr>
<tr>
<td>BARIKPOA JOHN</td>
<td>AIR QUALITY</td>
<td>HND ENVIRONMENTAL MICROBIOLOGY</td>
</tr>
<tr>
<td>BGI LABORATIES</td>
<td>LABORATORY ANALYSIS</td>
<td>FMENV/DPR/DSMENV ACCREDITTED</td>
</tr>
<tr>
<td>EARTHQUEST INT’L</td>
<td>LABORATORY ANALYSIS</td>
<td>FMENV/DPR/DSMENV ACCREDITTED</td>
</tr>
</tbody>
</table>

IEFCL PARTICIPANTS (PROPONENT) SUPPORT STAFF

<table>
<thead>
<tr>
<th>NAME</th>
<th>RESPONSIBILITIES</th>
<th>OBTAINED DEGREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR M.K JAIN</td>
<td>HEAD ENVIRONMENT IEFCL</td>
<td>PHD ENVIRONMENTAL SCIENCE</td>
</tr>
<tr>
<td>MRS TOYIN OLANSEBE</td>
<td>SR. ENVIRONMENT OFFICER</td>
<td>B. TECH. CHEMICAL & PETROCHEMICAL</td>
</tr>
<tr>
<td>MR. OBARIUMA OKORIE</td>
<td>ENVIRONMENT OFFICER</td>
<td>M. Sc. ENVIRONMENTAL SCIENCE</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Proponent
Indorama Eleme Fertilizer and Chemicals Limited (IEFCL) is a company organized and existing under the laws of Nigeria, with its registered office at Indorama Petrochemicals Complex, Eleme, Port Harcourt, Rivers State, Nigeria. IEFCL manufactures 2300 MTPD Ammonia & 4000 MTPD Urea Fertilizer (IEFCL-Train 1) at its Eleme manufacturing complex. IEFCL is undertaking the development of IEFCL-Train2 fertilizer project to increase the production of Urea adjacent to the IEFCL-Train 1 within the existing manufacturing Indorama complex at Eleme.

Need for the EIA
This project has been categorized as category one project by the Federal Ministry of Environment (FMENV), who confirmed the need to conduct a full blown EIA.

Terms of reference (TOR)
The Terms of Reference for this Environmental Impact Assessment (EIA) study include the following:

- Determination of the baseline environmental profile in and around the proposed project site.
- Rendering a qualitative and quantitative description of the physical, chemical, biological and social environments relevant to the project.
- Documentation of significant signposts, including the identification of potential impact and risks of the project on the surrounding environment at large.
- Recommendations and implementation of strategies to eliminate or reduce identified adverse impacts and risks
- Production of an Environmental Impact Assessment (EIA) report with effective Environmental and Social Management Plan (ESMP)
EIA Objectives

The objectives of the EIA are:

- Assessment of the state of the environment
- Establishment of environmental issues and factors associated with the proposed fertilizer project.
- Assessment and forecast of all possible and potential impacts of the proposed project on components of the environment in terms of magnitude and importance.
- Evaluation of project alternatives and identification of the option having least potential environmental impact.
- To describe the physical, chemical, biological and socio-economic features of the environment potentially affected by the Project and identifying the environmentally sensitive areas within the project area.
- Identifying the environmental impacts (both positive and negative) which may occur in the design, construction, commissioning, operation and decommissioning phases of the project.
- To superimpose all aspects of the project on the environment and evaluate the overall impacts of the project on the environment.
- To recommend any measures that could be used to avoid, and if not avoidable, mitigate/ameliorate any negative hazardous impacts as well as promote beneficial effects of the project.
- To use results of the investigations to develop project specific ameliorating plans/measures during execution.
- To define an Action Plan, which foresees the adoption of an Environmental and Social Management System (ESMS) for the project lifespan as defined by the Equator Principle no.4
- To serve as an advance notification to the regulatory agencies especially the Federal Ministry of Environment.
- To provide necessary answers to questions from stakeholders, host communities, regulators and other interested parties.
Scope of work of the EIA

The scope of the EIA included review of laws, regulations and guidelines (National and International), fieldwork, laboratory analysis, literature research to assess the impacts expected and mitigation/compensation measures against negative impacts. In order to achieve this, informal and formal consultations were held with all interested parties.

Based on the body of work described above, the EIA Report including comprehensive project/social and environment components description and an Environmental and Social Management Plan has been prepared and submitted to FMENV, the esteemed federal regulatory authority to process the report.

Regulatory Framework

The Legal basis for environmental permitting, applicable National and International Legislative and Administrative framework including international laws and conventions pertaining to this industry were reviewed and documented. The EIA Report was drafted taking into account the following national and international documents also:

- Guidance on EIA, EIS review, June 2001, European Commission;
- Equator Principles, June 2013, Equator Principles Association;
- Environmental, Health and Safety Guidelines, April 30 2007, World Bank and IFC;
- Environmental, Health and Safety Guidelines for Nitrogenous Fertilizer production, April 30 2007, World Bank and IFC;
- EIA Procedural Guidelines, 1995, Federal Environmental Protection Agency of Nigeria;
- EIA Sectoral Guidelines, Oil and Gas Industry Projects, Sub-sectoral Guidelines for Petrochemicals, 1995, Federal Environmental Protection Agency of Nigeria;
- EIA Sectoral Guideline, Manufacturing Industry
- Environmental Impact Assessment Act 86 of 1992
- Rivers State Environmental Protection Agencies Edict No 2 1994
• Rivers State Noise Control Edict, 1985
• Rivers State Waste Management Agency Law No.2, 2014
• Pollution Compensation Tax Edict, 1994

Justification of the project
The gross imbalance in the supply and demand of fertilizer for agricultural productivity in Nigeria goes to support the need to establish fertilizer plants. The use of Natural gas for production of fertilizer will support Federal Government’s Gas Revolution Policy on alternative uses for natural gas instead of the wasteful practice of flaring.

The project will help achieve the objectives of the federal gas revolution programme providing necessary infrastructure for natural gas based industries, thereby boosting the Nigerian agricultural sector by providing the most crucial agricultural input. The current economic diversification and agricultural policies of Nigeria promotes the responsible use of green revolution technologies namely fertilizer, in the efforts to achieve food security and for generating exportable surplus of farm products in a market-friendly way.

Urea is the most important nitrogen based fertilizer worldwide and is not considered hazardous or toxic.

The project will also contribute to increase the competitiveness of local and regional agriculture by enabling the sale of fertilizers at competitive prices.

Project Alternative
In determining the project options, issues such as ease of availability of raw materials, choice of appropriate location and best available technology for producing the products were reviewed. These formed the basis of suggesting that the chosen project option of sitting the project in the already prepared Indorama complex and the use of the latest energy efficient technology is the most appropriate solution for the development of the project.
Project Location

The project is located geographically within 4°49’N and Longitude 7°6’E. Maps of Nigeria, Rivers State and study area around Indorama complex, together with the plot plan of Indorama complex, were used to illustrate the proposed location of Ammonia and Urea Plants in Eleme (the Host community).

Project Description

To simplify the understanding of how the final product Granular Urea will be produced from the parent raw material, which is natural gas, block diagrams starting from the desulphurization of the natural gas, catalytic steam reformation of the gas into hydrogen, carbon dioxide and carbon-monoxide, catalytically shift conversion of carbon monoxide to carbon dioxide, selective adsorption of carbon dioxide and synthesis of ammonia from balance gas containing hydrogen and nitrogen were used. Ammonia and Carbon dioxide sets the stage for chemical reactions in Urea plant to end up with Granular Urea product.

The project entails the building of the following two process plants:

- Ammonia Plant for the production of 2300 MTPD of Ammonia;
- Urea Plant for the production of 4000 MTPD of Urea.

The project design shall be suitable for 30 years of operation with planned turn around maintenance every 3 years or longer. Design capacity is considered for an on stream days of 330 days/year. IEFCL has engaged Technology licensors /EPC Contractors for undertaking front end engineering design (FEED) & getting firm bids employing state of the art technology, optimum energy consumption & most environment friendly process.

For the purpose of the Environmental Impact Assessment, conservative approach has been adopted and highest levels of emission and discharge have been taken into account for pollutant dispersal monitoring. However the emissions of the new plants will be in compliance with the applicable International standards/requirements, in particular concerning the Nitrogenous Fertilizer production.
The proposed project shall be supplied with the utilities ((e.g. electric energy, waste water treatment etc.) from within the Indorama manufacturing complex where adequate utilities generation equipment shall be added.

Environmental and Social Baseline

Ecology

The objectives of the study was to examine the potential impacts that might be associated with the establishment of the IEFCL-Train2 fertilizer plant on the ecology of the area with emphasis on the vegetation (flora) and wildlife (fauna) in the area. In view of the aforementioned, the study area is classified under the Eleme Okrika industrial belt. However, in the study of ecology which covered thematic region of 5km radius, a total of 13 tree/shrub species within 12 families with Elaeisguinensis being the only common species and Apocynaceae being an occasional family was observed in the area. Similarly, a total of 18 herbaceous species occurred in the area within nine families. On the other hand, a total of 21 faunal species were observed to be found in the area and they comprised of mammals, rodents, wild ruminants, reptiles and aves. Invariably, the plant health conditions were also analyzed and it was ascertained that the vegetation in the area was in good condition in spite of a few diseases symptoms that were associated in the area. Environmental management plan proffered for the project will ensure yearly monitoring of the ecology of the influenced area of the project

HYDROBIOLOGY

Phytoplankton

The phytoplankton communities were represented by four taxonomic groups in the dry and wet seasons. The groups are: Bacillariophyceae (diatoms), Chlorophyceae (green algae), Cyanophyceae (blue green algae) and Euglenophyceae. Forty-eight (48) species were identified with the Bacillariophyceae dominating the phytoplankton community in the wet season and Cyanophyceae in the dry season. The seasonal changes in the species composition and population density maybe attributed to the changing environmental conditions. Results of the ecological indices (Shannon-Weiner index) suggest effect of anthropogenic activity (sand mining) in both climatic regimes. The analytical results of the surface water lends credence to this finding. The order of
dominance was as follows: Bacillariophyceae >> Chlorophyceae >> Cyanophyceae >> Euglenophyceae (Wet season); Cyanophyceae >> Bacillariophyceae >> Chlorophyceae (Dry season).

Zooplankton

The zooplankton community comprised of Copepoda, Rotifera, Tintinidae, Cladocera and Cichlidae in the wet and dry season. A total of 4 species were identified in the dry season and 15 species in the wet season. The Rotifers were the most dominant zooplankton taxonomic group representing about 72.14% and 42.86% in the dry and wet season. The dominance of Rotifers maybe attributed to the presence of sediments in suspension in the surface water bodies. This suggest that the surface water body is stressed between both seasons, as result of the intense sand mining. In increasing order, the dominance pattern of the zooplankton community were Rotifera >> Copepoda >> Tintinidae (Dry season); Rotifera >> Copepoda >> Cladocera >> Cichlidae (Wet season).

Benthic invertebrates

The Benthic invertebrates were represented by three taxonomic groups in the wet and dry season. The taxonomic groups are Oligochaeta, Insecta and Nauplii comprising of 4 taxa in the dry season and 10 taxa in the wet season. The insect dominated the benthic fauna community with a percentage composition of 75% in the dry season and 52.38% in the wet season. The dominance of Insecta is not uncommon in freshwater ecosystems as it has been reported to tolerate extreme conditions and high competitive capacity. The Shannon-Weiner diversity index suggests disturbed sediments in both climatic regimes. In increasing order, the dominance pattern of the benthic fauna were Insecta >> Oligochaeta (Dry season); Insecta >> Oligochaeta >> Nauplii (Wet season).

Ambient air

The Ambient Air Quality, Noise and Meteorology study was conducted in the month of September in the wet season, while secondary data for previous studies conducted in the area were used for dry season analysis. The exercise was carried out in compliance with statutory requirements and in line with national and international policy on the protection and conservation of the environment. Monitoring locations within and
outside the project area were chosen for the air quality study, an hourly mean monitoring was carried out for 8 hours as recommended by Federal Ministry of Environment (FMEnv) and the United States Environment Protection Agency (USEPA). Baseline results were compared with FMEnv and the National Ambient Air Quality Standards (NAAQS).

The air quality study exercise was conducted using air monitoring equipment, while noise levels were measured using portable noise instrument. The parameters measured during ambient air study are: CO, SO\(_2\), NO\(_2\), H\(_2\)S, THC, VOC, NH\(_3\) and particulate matter (TSP, PM\(_{10}\) and PM\(_{2.5}\)); meteorological parameters monitored are, temperature, relative humidity, wind speed, and wind direction.

A total of nine (9) sampling locations were selected for the assessment of the existing ambient air quality status of the project area. Measurement of baseline concentration levels of particulate matter (TSP, PM\(_{10}\) and PM\(_{2.5}\)), sulphur dioxide, nitrogen dioxide, carbon monoxide, hydrogen sulphide, ammonia, total hydrocarbons and VOCs was established. It was observed that average values of particulate matter (TSP, PM\(_{10}\) and PM\(_{2.5}\)) for all monitoring locations were well within FMEnv, IFC and NAAQS limits. The average concentrations of SO\(_2\) and NO\(_2\) were well below statutory limits in both seasons. The mean concentrations of CO, H\(_2\)S, NH\(_3\), VOCs and THC were low (below both FMENV permissible limits) for all monitoring locations in the project zone.

Baseline concentrations of SO\(_2\), NO\(_2\) and H\(_2\)S were generally low in both seasons. Mean concentrations of NH\(_3\) was 0.10±0.13µg/m\(^3\) in wet season and 0.30±0.12µg/m\(^3\) in dry season. The average concentration of total suspended particulate matter (TSP) was 26.7±16.79 µg/m\(^3\) in wet season and 86.7±14.37µg/m\(^3\) in the dry season. The mean concentration of particulate matter PM\(_{10}\) was 17.9±10.81µg/m\(^3\) in the wet season and 41.1±3.88µg/m\(^3\) in the dry season; while the average concentration of particulate matter PM\(_{2.5}\) was 8.8±6.09µg/m\(^3\) in the wet season and 18.4±2.39µg/m\(^3\) in the dry season.

Baseline measurement showed that concentrations of air pollutants in the area are generally low. These values are well below the FMEnv guidelines and represent baseline condition of the study area.
The environmental baseline describing the pre-construction air quality of the project area has been conducted through intensive measurements of air pollutants in the project area. Existing air quality in the study area is controlled by local weather condition and particularly the strength of the North-East and South-West trade winds that are prevalent in the area during the dry and wet seasons respectively.

Noise

The average noise level in the wet season was 55.5±7.98 dB(A), while the average noise level measured within the project area was 61.4±9.42 dB(A) in the dry season. The measured noise level values are well below the FMEnv guidelines and represent baseline noise level of the study area.

Waste management

Indorama utilizes the 4R (Reduce, Reuse and Recycle and Recover) as a basic principle of its waste management policy. The proposed Ammonia and Urea Plant IEFCL-Train 2 will use the existing incinerators at site for incineration of inenarrable wastes. New waste segregation units will be built for IEFCL-Train2 plants where solid waste will be segregated into properly labeled receptacles according to the types of waste from where it will be collected for final disposal. There is a dedicated scrap yard where large volume of waste is temporarily kept before reuse, recycling or disposal. Waste manifest, waste tracking, waste vendor certificate verification and vendor reassessment, waste quality assessment before final disposal are the quality control measures that will be used to assess the efficiency of the waste management scheme for the proposed project.

Effluent treatment

Effluent streams comprising sewage, process waste water, and blow down are collected into dedicated pits and pumped via pipelines to respective treatment units where it undergoes processes such as hydrolysis, stripping, neutralization, demineralization, and equalization. The quality assessment of treated effluent is assured at Inside battery limit (ISBL) treated effluent pit and at Effluent treatment plant (ETP) before final disposal.
Stack emissions

Gaseous emission will be minimized by the plant process design including scrubbing and final emissions will be discharged via stacks. Most of the gaseous emissions from the plant will be normal atmospheric components - nitrogen, oxygen, carbon dioxide, water vapour and inert gases - that will be discharged via stacks at an appropriate height.

Soil

Soil Sampling

Composite soil samples were collected at two depths: 0-15cm (Topsoil) and 15 – 30cm (Subsoil) with the aid of Dutch stainless steel hand auger from Seven (7) sites at different locations within the proposed project area and two control sites outside the project area. A total number of Eighteen (18) soil samples were collected.

Morphological properties

The soils of the study area are coarse grained, gravelly, locally fine-grained, poorly sorted, subangular to well rounded (Assez, 1975). Ojanuga et al (1981) stated that the genesis of these soils have resulted from cycles of soil formation which alternated with cycles of erosion in the mid tertiary to Holocene era in Nigeria. Soil consistency as observed during the field exercise were between wet (slightly sticky and non sticky) and moist (friable), while soil colour were between black (10YR2/1), Dark red (2.5/YR3/6), Brown (10YR5/3) and Strong brown (7.5YR4/6). The topography of the study area were relatively flat with some gentle slope as observed around station one (SS1- Okulu Aleto).

Physiochemical properties

The textural classification of the two soil depths within the study area and control site was predominantly fine-grained fairly consolidated Loamy Sand, Sandy Loam and Sandy Clay Loam soil (using the soil particle size matrix), with considerably low clay content. The soil reaction falls within acidic pH range of 4.70–5.6 (5.22 ± 0.39) for topsoil and 4.30 -6.80 (5.37 ± 1.03) for subsoil indicating that the soil is slightly acidic, which is typical of a Niger Delta soil. The Organic matter content of the soil ranged from 0.09-0.21 at the topsoil, while the subsoil ranged from 0.08 – 0.16% indicating low organic matter
content of both topsoil and subsoil according to FAO (1990) classification, which also reflected in the Total Organic Carbon results recorded during this study. Total Nitrogen levels ranged between 0.08 -0.39% and 0.08 – 0.27% for both the top and sub soil respectively indicating that Medium to high soil fertility according to FAO (1990) classification of soil.

Microbiology

The total population of total heterotrophic bacteria (THB) ranged from 0.52×10^4 to 4.50×10^4 (cfu/g) for topsoil and 1.50×10^4 to 3.95×10^4 (cfu/g) for subsoil; total heterotrophic fungi (THF) ranged from 0.15×10^4 – 1.59×10^4 (cfu/g) for topsoil and 0.45×10^4 – 2.00×10^4 (cfu/g) for subsoil. The population of total hydrocarbon utilizing bacteria (THUB) ranged from 0.25×10^4 – 1.96×10^4 (cfu/g) for topsoil and 0.37×10^4 – 1.99×10^4 (cfu/g) for subsoil, and the total hydrocarbon utilizing fungi (THUF) ranged from 0.64×10^4 – 3.00×10^4 (cfu/g) for topsoil and 0.22×10^4 – 3.50×10^4 (cfu/g) for subsoil.

Heavy metal

Heavy metals analysis in the soil samples revealed Iron (Fe) having the highest concentration (Mean 6847.25mg/kg topsoil and 6685.20mg/kg subsoil), while mercury (Hg) and Vanadium (V) were below detection limit.

Conclusively, soils of the area with the exception of some localized variations are characterized by the following very good physical features, poor inherent fertility status, low degree of acidity Low cation exchange capacity FAO (1990) and Predominant sandy texture.

Surface Water

The water body is a fresh water body with pH slightly acidic at the upstream which is typical of the Niger delta surface water bodies. The pH during the rainy season fieldwork (2017) ranged from 6.80 to 6.95 and 6.55 – 6.60 at the control stations compared to 6.73 to 8.24 and 7.10 for control station for dry season. All parameters analyzed during study show compliance to existing regulatory standard.
Sediment

The color of the sediment samples ranged from black to dark grey coloration. The silt fraction was higher than the sand and clay content making the sediment Silty in texture. Nutrients are adequate to support the healthy growth of benthic population. The concentrations of nutrients in sediment around the study area are indicated below; Sulphate concentrations varied from 51.8 to 483.5 mg/kg and 185.7 to 362.7 mg/kg for rainy season (September 2017), nitrate content ranged from 2.64 to 19.23 mg/kg and 8.22 to 10.4 mg/kg control stations for rainy season. Total Petroleum Hydrocarbon was low for all samples taken 9.62 to 18.22 mg/kg and control stations with 2.90 to 4.76 mg/kg for rainy season.

Socio Economic and Cultural Environment

The IEFCL-Train2 project will generate a lot of interest and expectations from the host communities. For investigating the socio economic component a dedicated questionnaire and focused group of interviews were the primary means of data collection. Four communities in two local government areas of Rivers State of Nigeria where surveyed for this study. The communities are Agbonchia, Aleto and Akpajo in Eleme Local Government Area and Elelenwo in Obio/Akpor. The people of Eleme claim a common ancestry, language and ethnicity. Elelenwo is of Ikwerre origin. Among Aleto and Agbonchia settlements, there are also three family units, respectively Okerewa, Njuru and Akpakpan. Okerewa is studied under Aleto, while Njuru and Akpakpan are covered under Agbonchia.

The total population of the four communities surveyed in this study is 66,614 in 2010 (Field survey and National Population Commission Publication 1996). The Federal Government of Nigeria (2007) estimates that the annual growth rate of population in Rivers State is 3.4% which is close to the situation in the study area as 3.5% in 2016. There are more male population (57%) than female (43%). The study also revealed that 0-14 years of age represent 41%, working age represent 59%. This implies that the study area has high population dependency burden. Under the working class 48% are self-employed, 21% are Government workers, 12% are company workers while 19% are unemployed. Under the category of self-employed 56% are business men and
contractors, those involved in farming represents 29%, trading 12% and others 3%. The mean daily income in the study area is 700 Naira which is slightly above the National monthly minimum wage of 18,000 Naira.

Large industrial complexes prior to the entry of Indorama in the region have not attracted medium manufacturing industries to utilize their products in the area. This lack of backward integration permeates to the level of small aspiring entrepreneur. As reflected in the occupation structure, people either farm, work for government or do small business. Outside the large industries in Eleme local government area, the other common enterprises are contractors, vendors, welding/fabrication workshops, sand mining, and traditional food processors.

The farming system is a limited form of shifting cultivation whereby a land is cleared and cultivated for several years until productivity diminishes; it is then abandoned until natural processes regenerate the soil. The fallow period was up to 7 years about 30 years ago, it reduced to about 4 years 10 years ago, but now the farms are rarely left fallow. Farming tools and inputs are also basic. Seedlings are obtained from the previous year’s harvest. Cutlasses, hoes and spade make up the farming tools. Mechanization is non-existent.

The sole source of domestic water supply is shallow boreholes. The water tables in the study areas are close to the surface and water can be tapped at 10m in most cases from the first aquifer.

Movement from one place to another is by road in the communities studied and major means of transportation is motor, bicycles, 2-stroke tri-cycles (popularly called Keke-NAPEP and buses). All the study communities are big enough to require some sort of internal transport which is met through the use of tricycles. In Aleto and Agbonchia motor bikes are the most important means of internal transport. Every community in the study area has a model primary school. All the communities also have a secondary school. Adult literacy rate in the study communities is commendable.
Energy demand in the study area is for lighting, cooking, and driving machines (including automobile). The experience during the fieldwork is that all energy types are in short supply. Electric power is erratic and there are occasions when they receive only a few hours of power in a week. The petroleum based fuel are scarce and expensive, like kerosene and cooking gas for domestic use, which gives credence to the dependents of wood as a major source of domestic fuel.

Most respondents live in own houses. Majority of the houses are constructed with concrete blocks and roofed with corrugated iron sheets. Other types of houses reported by respondents are concrete blocks roofed with iron sheets, earth block and iron sheets, and the traditional wattle and mud houses roofed with thatch or iron sheets. The average household is between eight/nine persons. Four activities dominate the cultural calendar of communities in the study area namely; wrestling, traditional marriages, new yam festival and dances. The only surviving historical forest as a result of rapid industrialization in the area is the Onura forest. Social Affiliation in the societies includes politics, co-operatives, social clubs, education, religion and cultural associations. Dispute over land boundary and ownership is the primary cause of intra and inter communal conflicts in the study settlements. The courts are the main avenue for dispute resolution.

Traffic Survey
The four communities in the study area are traversed by two major highways: the East – West Road that begins from Warri and end in Eket and the Port Harcourt – Aba Expressway.
A survey of the existing traffic volume on the East- West Road (Direction from Akpajo to Port Harcourt) indicated that Indorama complex will affect traffic volume during the peak hours of 8:00am to 9:00am and 5:00pm to 6:00 pm. In view of the findings, traffic management plan has been instituted by Indorama.

Health Assessment
The Health Assessment of the project area was conducted in and around the facilities and the communities to determine the baseline characteristics of the health status of
the project area against which future impacts of the project can be compared. Secondly to determine the probable/potential impacts of the project on the health of the workers within the IEFCL facility, the people around the communities (Agbonchia, Aleto, Akpajo, and Elelenwo) so as to determine the type of intervention/s needed to ameliorate these negative potential impacts. These communities were sampled by the health personnel to obtain information regarding mortality and morbidity rates, types of health hazards, most prevalent diseases, disease vectors, nutrition, health facility infrastructure capability and usage, average family size, sexual reproductive health, immunization status and coverage, sewage and waste management system, air quality, water quality, radiation sources and levels. The state of health delivery facilities/services in the area is below standards expected of an urban area. The principal communicable diseases in the area are Malaria, Diarrhea, skin rashes, upper respiratory tract infections and STIs. While prevalent non-communicable diseases in the area are hypertension, food poisoning and occupational injury.

Associated and Potential Impacts

Associated and potential impacts evaluation for the project was based on the results of technical studies, together with established facts in relevant literatures, perceptions and evaluations of stakeholders, project characteristics and general observations obtained during field data gathering.

For all project phases (Construction, including recruitment phase and site preparation, Operation & Maintenance and Decommissioning) activities that can affect the environmental and social components have been identified, together with potential and associated impacts. Also the Health & Safety issues have been similarly considered.

Occasionally hydrocarbon odor is perceived in the study area; traffic volume variations & associated issues are experienced. Positive impacts include capacity development, job opportunities and vendor patronage for host communities and increase economic activities in the study area in particular.
Cumulative Impacts
The proposed project will be sited in the existing Indorama complex, where already IEFCL-Train1 operate in addition to other plants. Therefore the cumulative impact assessment was conducted to ascertain the combined effect of the operating unit & proposed project to the valued environmental component (VECs) immediate to this facility in order to proffer mitigation measure. Based on the individual impact assessment for the projects, majority of the cumulative impacts would occur during the operational phase only, as construction is not expected to coincide with any other construction within the Indorama complex. Most of the cumulative effects would occur, when there is an overlap of activities. These activities will be taking place within an area of about 2 km² radius.

The cumulative positive impacts identified are
- Business Opportunity/Economic enhancement
- Skills acquisition
- Increase in revenue for the Government, Community and Indorama

The cumulative negative impacts identified are:
- Increase in cost of living/Inflation during construction
- Increase in potential for road traffic volume
- Stress on existing security structures during construction

The significance rating of each of these impacts has been obtained through the process of impact identification, ranking and quantification, in each of the project phases.

The evaluation of impacts in the different phases of the initiative considered the predicted implementation of the above mentioned actions and it is briefly reported hereinafter.

Mitigative Measures
Various mitigation measure, (technical and administrative) are proffered specific to environmental problems that may arise during construction, operations and even
abandonment and decommissioning stage. An environmental and social management system will be adopted to help enhance the results of the mitigation measures.

Construction Phase

During construction phase IEFCL will put in place all the necessary measures to ensure health of workers and environmental safeguard and to minimize the risk of possible incidental events.

The slight increase in dust emissions from construction activities will be properly addressed by spraying water at construction sites to reduce powder dispersion, when construction is carried out in dry season.

The construction activities will be carried out, also, in accordance with applicable regulations on noise.

Increment in vehicular movements will occur during construction phase, however, the Project will have minor effects on the existing vehicular transit on main road axes around Indorama complex, because of adherence to IEFCL’s Traffic Management Plan.

Temporary and occasional impacts on vibrations are expected, but considering the distance of sensible receptors between the Indorama complex and the host communities, occasional vibration will have no impact on the receptor.

Risk of ground water/soil contamination due to accidental spills during construction activities is a minor concern that will be minimized through the adoption of dedicated management measures into the ESMS.

The construction activities will take into account the soil geological and geotechnical characteristics avoiding the execution of the main foundations during the wet season in order to exclude possible soil erosion concerns.

Construction areas are located inside the industrial complex under the control of Indorama, without using virgin land. During this phase, IEFCL will make adequate accommodation arrangements for expatriates to reduce pressure on local houses.

Minor impacts on wildlife are expected and time limited, associated to diurnal hours. Current fruition of the existing fauna will not change.

Waste production during construction phase will be managed by the procedures and facilities already existing in the Indorama complex. The excavated soil not reusable for geotechnical reasons will be directed to appropriate external authorized landfills.
A population increase in the near host communities associated to the realization of the Project is expected. Dedicated policies and actions will be adopted by IEFCL to safeguard the host communities from impacts due to the influx of workers, however the host communities will particularly benefit of the increase of both direct and indirect employment.

Operation Phase

During the operation phase, IEFCL will put in place all the necessary measures to ensure health of workers and environmental safeguards to minimize the risk of possible incidental events.

No significant effects are expected on air quality during operation phase, since the pollutants concentrations at ground level at the INGORAMA complex after the operation of the new Fertilizer plants will be in compliance with air quality regulatory/standards guidelines and within the limits of occupational exposure. No cases of odor annoyance are expected due to \(\text{NH}_3 \) emission since facility to burn off Ammonia has been incorporated.

The project will not add to air emissions that will negatively affect the existing quality of vegetation around the complex.

Moreover, fugitive emissions and emissions can occur in upset situations only (e.g. emissions from ammonia storage flare) and in case of such emissions adequate flaring facilities have been provided. Such incidents shall be well managed by a dedicated Management Systems.

Night-time vehicular movements will be minimized up to extent possible.

IEFCL will ensure that the operation of the new plants will be in accordance with applicable regulations on noise.

Water effluents going to existing retention pond and to Okulu Stream will increase due to the operation of the new Fertilizer Plant. This is not likely to generate an additional deterioration of surface water and its hydrobiology/sediment because compliance with regulatory limits at discharge point will be ensured after the operation of the new Fertilizer Plant.

As a consequence, no variation in existing surface water quality likely to modify the characteristics of surrounding vegetation is expected.
The water consumption by new project will not affect the water table. The ground water recharge rate and the existing ground water flows will remain same. The risk of ground water/soil contamination due to accidental spills during operation will be minimized through the adoption of dedicated management measures.

The project may have negative Health Impact on the host communities around IEFCL complex due to the influx of workers who are possible carriers of some communicable diseases. The same population increment in the near host communities will be managed in a proper manner to safeguard the health of host communities through the various health intervention programs organized by IEFCL HSE and Health Department. IEFCL will construct new residential facilities inside the complex for expatriate staff only.

Also an acceptable increase of vehicular traffic is expected and will be adequately managed in order to minimize possible socio economic impacts and potential associated hazards. There are no socio-economic activities that are going to be negatively affected by the project and the installation of new units will not interfere with cultural/social elements present in the study area.

The initiative will not modify the existing microclimatic conditions of the site considering also the expected increment of aqueous vapor emissions in atmosphere from Cooling Towers.

The catalytic steam reformation of Natural gas (major raw material) produces CO2 among other gases which used for synthesis of NH\textsubscript{3}. The technology of using CO\textsubscript{2} and NH\textsubscript{3} to produce Urea prevents CO\textsubscript{2}, a greenhouse gas, been emitted into the atmosphere. Optimal use of Natural gas for the production of fertilizer in this project will reduce the release of associated greenhouse gases, being emitted in to the atmosphere due to gas flaring from the oil production fields.

Environmental Management Plan (MP)

IEFCL has defined a plan for managing the proposed project and associated impacts related to environmental and social impact and occupational health and safety concerns. The MP includes strategies to enable proactive resolutions of the environmental and social impacts expected, procedures for training, development of adequate capacity; plans for monitoring environmental, social, occupational and health issues as well as
management of the effects of the impacts and minimization of the risks, parameters to be measured/monitored, frequency and location of monitoring.

The plan is aimed at adopting an Environmental and Social Management System in accordance with the IFC Performance Standard no° 1.

The ESMS adopted at IEFCL is based on the best practices adopted in the same kind of industries globally. The systems and procedures practiced at IEFCL are in line with globally accepted international standards, like ISO 14001, OHSAS 18001 etc. The IEFCL-Train2 project is an expansion of IEFCL-Train1 and the same systems and procedures will be extended to new plants.

Decommissioning Phase

At the end of the life span of the project, or otherwise, if proponent and or government decides to decommission the project, a plan would be drawn by the proponent and approved by all concerned Regulators and stakeholders before the plan is executed. All possible measures will be taken in order to ensure health of workers and environmental safeguard and to minimize the risk of possible incidental events during decommissioning phase. IEFCL commits itself to restore the environmental conditions existing before the realization of the IEFCL-Train2 Fertilizer Plant project.

Conclusion

Evaluation of EIA data, found that the project is environmentally feasible and will not cause serious effect to the environment, considering that the existing and proposed mitigation measures are implemented. Residual issues associated with the project are expected to be minor and not likely to have long-term significance on the environment.

Recommendation

Mitigation and compensation measures are to be addressed according to the proposed action plan. All its monitoring programs are to be religiously implemented and periodically reviewed and revised as necessary to take into consideration changes made to the project during its operation. Vibrant and dynamic company-community relations need to be maintained to ensure sustainability of the project.
ACKNOWLEDGEMENT

The management of Indorama Eleme Fertilizer and Chemical Ltd (IEFCL) wishes to acknowledge the opportunity granted by the Government of Federal Republic of Nigeria through the Ministry of Environment to conduct this EIA for the proposed IEFCL-Train2 fertilizer plant in the Indorama complex, Eleme.

We appreciate the cordial working relationships we had with the Federal Ministry of Environment, the Rivers State Ministry of Environment, during consultation and fieldwork. The Eleme Local Government Council and the Traditional Head of Eleme Kingdom, during the field data gathering exercise and the stakeholder’s engagements.

Thank you,

Management of IEFCL